THE FOURTHWAY MANHO E-JOURNAL Volume 64 July 22, 2019 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
THE TRI-OCTAVE MOVEMENTS OF ALLOTROPIC ELEMENTS By Professor Dr. Tan Man-Ho (An excerpt from the original work, Real World Views, Book 2, by Professor Dr. Tan Man-Ho entitled, "Biocosmic Nervo-Reflectant and the Theory of Material Reflection in Man, Inner Development and Social Upheavals," July 1972 ~ September 1973 Discourses, Chapter 3, Section F: "The Tri-Octave Movement of the Allotropic Elements," pp. 81~89)
F. THE TRI-OCTAVE MOVEMENTS OF
ALLOTROPIC ELEMENTS
1
Allotropes are created as a result of
quantitative changes to the number of atoms and bonding structures of the
atom group under certain external conditions of pressure, light and
temperature which lead to qualitative changes in the physical and chemical
properties of the element. Allotropes are the inner stopinders of an
element within the World of Chemical Elements which is classified in the
Periodic Table of Elements, and they function within the Octave of Elements
and within this frame of reference. It is still within the dimensions
of the elements. They are not within the World of Elementary Particles
nor are they in the Periodic Table of the Elementary Particles (Subatomic
Particles or the Octave of Atomic particles), or within the Octave of the
Microcosms. The general laws of dialectics and the general laws of octave
apply to both these worlds. Allotropes are different
structural forms of the same element and can exhibit quite different
physical properties and chemical behaviors, whether in the solid, liquid or
gaseous states. Allotropes are the forms or appearances and the
elements (the simple matters) are the essences - the general law that matter
must appear in forms is implied here. The change between allotropic forms is triggered by
the same external forces that affect other structures, i.e. pressure, light,
and temperature. The stability of any particular allotrope depends on
these particular conditions. Iron, for example, changes from a
body-centered cubic
structure (ferrite) to a face-centered cubic structure (austenite) above 906
°C, and tin undergoes a transformation known as tin pest from a metallic
phase to a semiconductor phase below 13.2 °C. These points of
“qualitative” changes are nodes of the dialectic process of allotropic
motion. However, according to the laws of uneven development of the
dialectics, these points can just be “quantitative” nodes for minor
“qualitative” changes of the same elements. Typically, elements capable of variable coordination number and/or oxidation states tend to exhibit greater numbers of allotropic forms. Another contributing factor is the ability of an element to catenate into stopinder-like long chains through its covalent bonding ability. Allotropes are typically more noticeable in non-metals (excluding the halogens and the noble gases) and metalloids. Nevertheless, metals tend to have many allotropes.
Among the naturally occurring metallic elements (up
to U, without Tc and Pm), 28 are allotropic at ambient pressure: Li, Be, Na,
Ca, Sr, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, (Pm), Sm, Gd, Tb, Dy,
Yb, Hf, Tl, Po, Th, Pa, U. Considering only the
technologically-relevant metals, six metals are allotropic: Ti at 882˚C, Fe
at 912 and 1394˚C, Co at 422˚C, Zn at 863˚C, Sn at 13˚C and U at 668 and
776˚C. Below is a list of the Inner Octaves (inner
stopinders) allotropic elements:
2 Different substances have different powers of attraction and repulsion. If the attraction is strong enough, chemisorption results and new compounds are formed. If the attraction is weak, the attractive bonds will “break” and elements are physically absorbed. Suppose we have a substance of mixed amount of various elements are allowed to pass through the absorbent with the help of a medium. In order for a substance to move through the absorbent, a medium or solvent is required. This absorbent must not “react” with the substance. As the substance passes through the absorbent those strongly attracting atoms chemisorb to form another chemical compound, and those weakly attracting atoms remain separated and stay at a greater distance from the atoms of chemisorbed compound. These various elements absorb and emit waves of varying but definite frequencies for different kinds of element and on reaching the eyes they produce the effects of colors to our eyes. A spectrum of colors can be observed. In nature, there existed various elements such as
copper, sulfur phosphorus, carbon, tin, etc. These elements, of
course, have different physical properties. In elements with different
physical properties (or crystallized in) said to exhibit allotropy.
Sulfur, for example, has two types of allotropes – monoclinic and the
rhombic sulfur. At a certain temperature 98 °C rhombic sulfur is
stable while all the others formed allotropes are said to be metastable.
At a certain temperature, say 95.5 °C, it is
possible for two forms of sulfur to form (six or s). Experiment shows
that the s is formed. This phenomenon is summarized in a form of a
lower. When it is possible for a stable and a metastable form of a
substance to form be produced, the metastable form is produced first this
law is called Newale’s law of success reaction. All the metastable
form of a substance will eventually changes to the stable form. According to the laws of dialectic, the L-sulfur at
first undergoes quantitative changes until it reaches 95.5 °C. At this
temperature the L-sulfur is observed to undergo qualitative changes. It is
transforming into B-sulfur. There is no quantitative change that is
the temperature remains 95.5 °C. This is in accordance with the laws
of dialectic. This temperature is the transition temperature – the
temperature whereby L-sulfur is transformed into B-sulfur. Let us now begin our frame of reference with an
initial temperature slightly above of 95.5 °C. In this case, L-Sulfur
still transforms into B-Sulfur. If the temperature is altered slightly
below say 98 °C, the transformation to B-sulfur still occurs.
It is seen that white phosphorus “stubbornly”
insists on transforming into red phosphorus quite independent of the forced
quantitative changes in temperatures by the experimenter himself. It
is imagined that there is no transition temperature. There is no
transition temperature because sender the condition of the , the white
phosphorus has already in its stage of transition to red phosphorus
recalling the above phenomenon in L-Sulfur; while B-Sulfur is in its stage
of transformation the quantitative changes are very badly interpreted.
It appears like at 95.5 °C. If the temperature is increased, the
L-Sulfur will be seen to transform to B-Sulfur quite independently of the
temperature. From this a 5th
principle of dialectics can be deduced: While a substance is undergoing qualitative changes
or is in the stage of qualitative changes the changes are quite independent
of the quantitative changes.
White phosphorus, under laboratory condition, is
undergoing qualitative changes. The change is quite independent of the
quantitative forced changes such as temperature. While in the transition stage, there are always two
different qualities in co-existence (equilibrium) and which proportions can
be changing with time and with the possible changes in the transition point. “Two forms of
phosphorus red and white phosphorus also differ chemically. White
phosphorus is poisonous, burns spontaneously in oxygen and chlorine, and
gives phosphine with caustic soda. Red phosphorous is non-poisonous,
combines with oxygen and chlorine only when heated, and does not read with
caustic soda.” (Hey) If the red phosphorus is heated, it would be changed
into yellow phosphorus and even before it vaporizes, yellow phosphorus has
already being form. Therefore, it is hard to understand how red and white
(or yellow) phosphorous can differ in chemical properties.
|